

Introduction of Bio-Robotics and **Human-Mechatronics Laboratory**

Bio-Robotics and Human-Mechatronics Laboratory

Graduate School of Information, Production and Systems, Waseda University http://www.waseda.jp/sem-matsumaru/

Takafumi MATSUMARU

http://www.f.waseda.jp/matsumaru/ matsumaru@waseda.jp

■ Introduction

- Biographical Information
- BR&HM Laboratory

□ Past subjects

- HFAMRO: friendly amusing mobile robot
- IDAT: image-projective desktop arm trainer
- Touch Interaction
- Calligraphy-Stroke Leaning Support System
- Mobile robot companion
- RDB-D Visual SLAM

□ Recent subjects

- Interactive Aerial Projection of 3D Hologram Object
- Pedestrian Navigation Robotic System
- Reinforcement Learning in Manipulator Control
- Real-time Remote Projection of 3D Human Image
- Short Range Finger Pointing Interface using Depth Camera
- Brand-Wise Random Picking of 500ml Plastic Bottle using RGB Image

□ Closing remarks

■ Introduction

- Biographical Information
- BR&HM Laboratory

□ Past subjects

- HFAMRO: friendly amusing mobile robot
- IDAT: image-projective desktop arm trainer
- Touch Interaction
- Calligraphy-Stroke Leaning Support System
- Mobile robot companion
- RDB-D Visual SLAM

□ Recent subjects

- Interactive Aerial Projection of 3D Hologram Object
- Pedestrian Navigation Robotic System
- Reinforcement Learning in Manipulator Control
- Real-time Remote Projection of 3D Human Image
- Short Range Finger Pointing Interface using Depth Camera
- Brand-Wise Random Picking of 500ml Plastic Bottle using RGB Image

□ Closing remarks

Biographical Information

- □ 1985 B.S., Mechanical Engineering, Waseda University "Development of articulated manipulator aiming at force control" (Supervised by late Prof. I.Kato)
- □ <u>1987</u> <u>M.S., Mechanical Engineering, Waseda University</u>

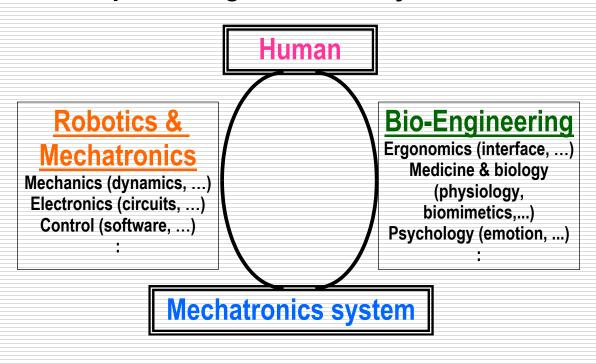
"Basic theory of multi d.o.f. compliance control on articulated manipulator"
(Supervised by late Prof. I.Kato)

1926-1994

- 1987-99 Corporate Research & Development Center, Toshiba Corporation
 - Research on robots for specialized operations
 - Developing mechatronics systems using robotic technologies
- 1998 Ph.D., Mechanical Engineering, Waseda University

"Research on structure and control of working robot in a narrow space" (supervised by Prof. S.Sugano)

- 1999-2010 Associated Professor, Shizuoka University
 - Education and Research on Bio-Robotics and Human-Mechatronics
 - Invited Professor (2003). LSC CNRS, Evry France, Visiting Fellow (2002). Shizuoka Industrial Research Institute, Shizuoka Japan, etc.
- 2010- Professor, Waseda University
 - Research and Education on Bio-Robotics and Human-Mechatronics



Leading Innovation

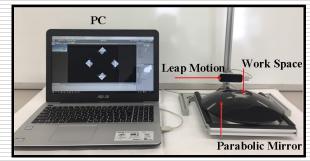
Bio-Robotics and Human-Mechatronics Laboratory

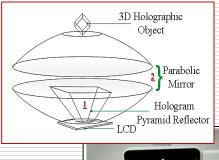
- □ Various themes between human and mechatronics systems (robots and other systems)
- □ To make mechanical systems more friendly / useful for users
- Developing new functions and producing real-world systems
- □ Integrating various knowledge and technologies into systems (selection / combination are based on engineering sense)
- Work on elemental technologies by ourselves if desired

Better interaction / relationship between human and robots

Bio-Robotics and Human-Mechatronics Laboratory

- □ Career after graduation
 - Domestic companies
 - Seiko Epson Corp.
 - Ascent Robotics Inc.
 - □ KCM Corp.
 - Nachi-Fujikoshi Corp.
 - Oversee companies
 - □ IDEALSEE [Sichuan, China]
 - Hangzhou Hikvision Digital Technology Co.,Ltd. [China]
 - HuaXia Bank [Beijing, China]
 - □ Huawei Technologies Co.,Ltd. [Shenzhen, China]
 - CT (Computer Technology) Asia Co.,Ltd. [Thailand]
 - China Mobile Ltd.
 - Da-Jiang Innovations Science and Technology Co.,Ltd. [China]
 - Shanghai Mitsubishi Elevator Co.,Ltd. [China]
 - Perfect World Co.,Ltd.
 - Foreign university
 - Universitas Pendidikan Indonesia [Bandung, Indonesia]
- Bio-robotics & Human-mechatronics Lab., Grad School of IPS, Waseda Univ., Japan



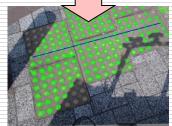

- Introduction
 - Biographical Information
 - BR&HM Laboratory
- □ Past subjects
 - HFAMRO: friendly amusing mobile robot
 - IDAT: image-projective desktop arm trainer
 - Touch Interaction
 - Calligraphy-Stroke Leaning Support System
 - Mobile robot companion
 - RDB-D Visual SLAM
- □ Recent subjects
 - Interactive Aerial Projection of 3D Hologram Object
 - Pedestrian Navigation Robotic System
 - Reinforcement Learning in Manipulator Control
 - Real-time Remote Projection of 3D Human Image
 - Short Range Finger Pointing Interface using Depth Camera
 - Brand-Wise Random Picking of 500ml Plastic Bottle using RGB Image
- □ Closing remarks

Interactive Aerial Projection of 3D Hologram Object

- **□** Target/purpose
 - Interactive interface of 3D holographic object image
 - "Remote operation" of robotic systems
- □ 3DAHII, three-dimensional aerial holographic image interface
 - Reconstruction and aerial projection of 3D object image
 - □ Pyramid-holography
 - □ Parabolic reflector
 - Interactive instruction
 - □ Direct/real-time interaction with 3D object image
 - Operating procedure
 - Reaction function
 - □ End-tip control of robot manipulator

3DAHII@iREX2017 [2017.12] (00:13)

Street crossing

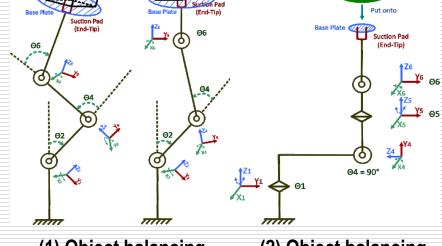

Pedestrian Navigation Robotic System

- ☐ How to make mobile robots navigate in semi-structured outdoor environments
 - Without pre-driving recording (i.e. SLAM)
 - Using network-provided maps (i.e. OpenStreetMaps)
 - Contextual awareness for navigation (vision, location)
- □ Pedestrian path planning
 - Build upon internet map processing approach
 - Image processing on 2D maps to infer
 - ☐ City blocks, Street crossings, Sidewalk path

Sidewalk Path

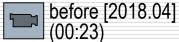
Start point

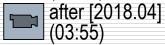
Student: <u>Duc THAN</u>


Reinforcement Learning in Manipulator Control

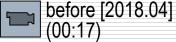
□ Reinforcement learning (RL)

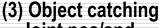
- Policy
 - □ S: environment and agent States
 - ☐ A: Action of agent
 - □ R: Reward
- Example data
 - □ Supervised learning
 - Unsupervised learning


□ Deep RL

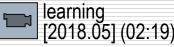

- Discrete action space (DAS) approach
 - Deep Q-Network (DQN) algorithm
- Continuous action space (CAS) approach
 - ☐ Stochastic CAS (SCAS)
 - Proximal policy optimization (PPO) algorithm
 - Deterministic CAS (DCAS)
 - Deep deterministic policy gradients (DDPG) algorithm

(1) Object balancing


Joint position

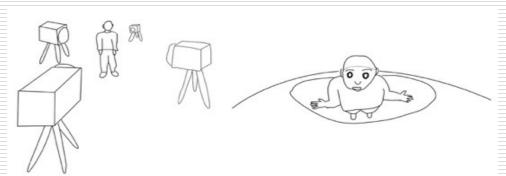


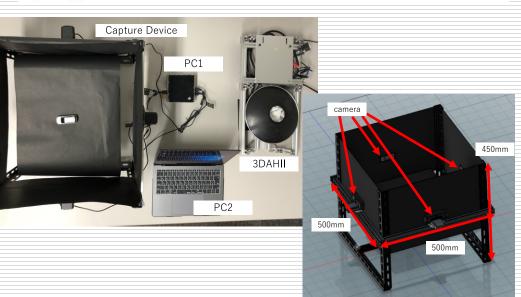
(2) Object balancing

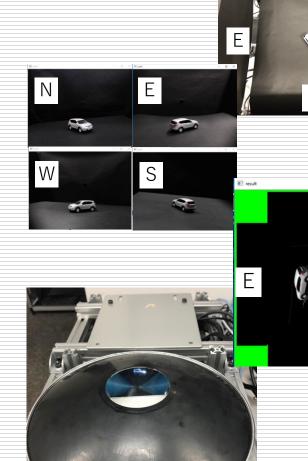

Joint pos/spd

after [2018.04] (01:41)

Joint pos/spd

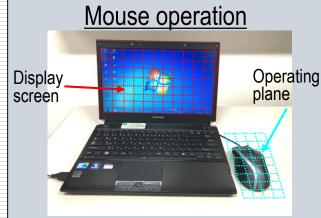


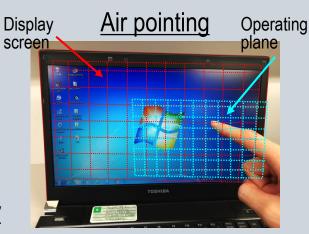



Real-time Remote Projection of 3D Human Image

□ Real-time remote projection of 3D human image

- Image capturing
- Image processing





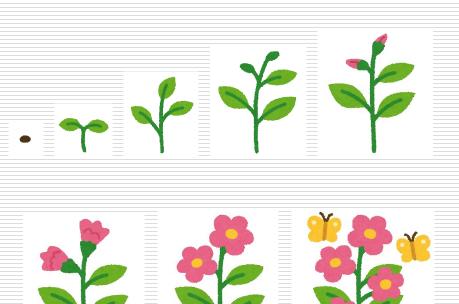
Short Range Finger Pointing Interface using Depth Camera

- □ Switch frequently between typing and cursor placing in tasks
 - Web browsing, Editing spread sheet and documents, Coding
- Cursor placing using finger gesture
 - No need of physically-interactive devices
 - Easy finger operation
 - □ Familiar with sign language
 - Finger pointing is facing to display screen
 - □ Intuitive
- □ Approach
 - a) Ergonomic use of 3D space -- Posture
 - ☐ Hand putting on desk
 - b) Recognition accuracy of finger in near range -- Sensor
 - □ Realsense SR300
 - c) Real time operation -- Processing
 - □ Accurate measurement of fingertip, Fast response

Brand-Wise Random Picking of 500ml Plastic Bottle using RGB Image

□ 500ml Plastic Bottles

- Condition
 - □ Dry
 - □ In water
 - □ In water with ice
- Sensor
 - □ RBG camera
- Procedure
 - □ Segmentation
 - □ Brand recognition
 - Masked Image
 - **ROI** image
 - Mask R-CNN + Inception V3


- Introduction
 - Biographical Information
 - BR&HM Laboratory
- □ Past subjects
 - HFAMRO: friendly amusing mobile robot
 - IDAT: image-projective desktop arm trainer
 - Touch Interaction
 - Calligraphy-Stroke Leaning Support System
 - Mobile robot companion
 - RDB-D Visual SLAM
- □ Recent subjects
 - Interactive Aerial Projection of 3D Hologram Object
 - Pedestrian Navigation Robotic System
 - Reinforcement Learning in Manipulator Control
 - Real-time Remote Projection of 3D Human Image
 - Short Range Finger Pointing Interface using Depth Camera
 - Brand-Wise Random Picking of 500ml Plastic Bottle using RGB Image

□ Closing remarks

Message

- Let's grow up together developing a new field at the meeting ground for people who have a new way of thinking and extraordinary abilities regardless of areas or aspects.
- □領域や分野にとらわれない 新しい考え方や、高い能力 をもった人々が集う場で、 新しい分野を開拓しながら、 一緒に成長しましょう.

Introduction of Bio-Robotics and **Human-Mechatronics Laboratory**

Bio-Robotics and Human-Mechatronics Laboratory

Graduate School of Information, Production and Systems, Waseda University http://www.waseda.jp/sem-matsumaru/

Takafumi MATSUMARU

http://www.f.waseda.jp/matsumaru/ matsumaru@waseda.jp